Send to

Choose Destination
Dev Dyn. 2008 Jul;237(7):1780-8. doi: 10.1002/dvdy.21581.

The zebrafish embryo as a dynamic model of anoxia tolerance.

Author information

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.


Developing organisms depend upon a delicate balance in the supply and demand of energy to adapt to variable oxygen availability, although the essential mechanisms determining such adaptation remain elusive. In this study, we examine reversible anoxic arrest and dynamic bioenergetic transitions during zebrafish development. Our data reveal that the duration of anoxic viability corresponds to the developmental stage and anaerobic metabolic rate. Diverse chemical inhibitors of mitochondrial oxidative phosphorylation induce a similar arrest in normoxic embryos, suggesting a pathway responsive to perturbations in aerobic energy production rather than molecular oxygen. Consistent with this concept, arrest is accompanied by rapid activation of the energy-sensing AMP-activated protein kinase pathway, demonstrating a potential link between the sensing of energy status and adaptation to oxygen availability. These observations permit mechanistic insight into energy homeostasis during development that now enable genetic and small molecule screens in this vertebrate model of anoxia tolerance.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center