Format

Send to

Choose Destination
See comment in PubMed Commons below
J Gastrointest Surg. 2008 Aug;12(8):1452-8. doi: 10.1007/s11605-008-0519-6. Epub 2008 Jun 3.

Targeted suppression of beta-catenin blocks intestinal adenoma formation in APC Min mice.

Author information

1
Department of Surgery, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA.

Abstract

INTRODUCTION:

Mutations involving the adenomatous polyposis coli (APC) tumor suppressor gene leading to activation of beta-catenin have been identified in the majority of sporadic colonic adenocarcinomas and in essentially all colonic tumors from patients with Familial Adenomatous Polyposis. The C57BL/6J-APC(min) (Min) mouse, which carries a germ line mutation in the murine homolog of the APC gene is a useful model for intestinal adenoma formation linked to loss of APC activity. One of the critical downstream molecules regulated by APC is beta-catenin; molecular targeting of beta-catenin is, thus, an attractive chemopreventative strategy in colon cancer. Antisense oligodeoxynucleotides (AODNs) capable of downregulating murine beta-catenin have been identified. ANALYSIS OF beta-CATENIN PROTEIN EXPRESSION IN LIVER TISSUE AND INTESTINAL ADENOMAS: Adenomas harvested from mice treated for 7 days with beta-catenin AODNs demonstrated clear downregulation of beta-catenin expression, which was accompanied by a significant reduction in proliferation. There was no effect on proliferation in normal intestinal epithelium. Min mice treated systemically with beta-catenin AODNs over a 6-week period had a statistically significant reduction in the number of intestinal adenomas. These studies provide direct evidence that targeted suppression of beta-catenin inhibits the formation of intestinal adenomas in APC-mutant mice. Furthermore, these studies suggest that molecular targeting of beta-catenin holds significant promise as a chemopreventative strategy in colon cancer.

PMID:
18521697
DOI:
10.1007/s11605-008-0519-6
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center