Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2008 Sep;95(5):2402-14. doi: 10.1529/biophysj.108.132175. Epub 2008 May 30.

Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin.

Author information

Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.


The cell membrane of Salinibacter ruber contains xanthorhodopsin, a light-driven transmembrane proton pump with two chromophores: a retinal and the carotenoid, salinixanthin. Action spectra for transport had indicated that light absorbed by either is utilized for function. If the carotenoid is an antenna in this protein, its excited state energy has to be transferred to the retinal and should be detected in the retinal fluorescence. From fluorescence studies, we show that energy transfer occurs from the excited singlet S(2) state of salinixanthin to the S(1) state of the retinal. Comparison of the absorption spectrum with the excitation spectrum for retinal emission yields 45 +/- 5% efficiency for the energy transfer. Such high efficiency would require close proximity and favorable geometry for the two polyene chains, but from the heptahelical crystallographic structure of the homologous retinal protein, bacteriorhodopsin, it is not clear where the carotenoid can be located near the retinal. The fluorescence excitation anisotropy spectrum reveals that the angle between their transition dipole moments is 56 +/- 3 degrees . The protein accommodates the carotenoid as a second chromophore in a distinct binding site to harvest light with both extended wavelength and polarization ranges. The results establish xanthorhodopsin as the simplest biological excited-state donor-acceptor system for collecting light.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center