Send to

Choose Destination
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W496-502. doi: 10.1093/nar/gkn305. Epub 2008 May 30.

CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data.

Author information

Department of Computing Science, Department of Biological Sciences, University of Alberta and National Research Council, National Institute for Nanotechnology (NINT), Edmonton, AB, Canada T6G 2E8.


CS23D (chemical shift to 3D structure) is a web server for rapidly generating accurate 3D protein structures using only assigned nuclear magnetic resonance (NMR) chemical shifts and sequence data as input. Unlike conventional NMR methods, CS23D requires no NOE and/or J-coupling data to perform its calculations. CS23D accepts chemical shift files in either SHIFTY or BMRB formats, and produces a set of PDB coordinates for the protein in about 10-15 min. CS23D uses a pipeline of several preexisting programs or servers to calculate the actual protein structure. Depending on the sequence similarity (or lack thereof) CS23D uses either (i) maximal subfragment assembly (a form of homology modeling), (ii) chemical shift threading or (iii) shift-aided de novo structure prediction (via Rosetta) followed by chemical shift refinement to generate and/or refine protein coordinates. Tests conducted on more than 100 proteins from the BioMagResBank indicate that CS23D converges (i.e. finds a solution) for >95% of protein queries. These chemical shift generated structures were found to be within 0.2-2.8 A RMSD of the NMR structure generated using conventional NOE-base NMR methods or conventional X-ray methods. The performance of CS23D is dependent on the completeness of the chemical shift assignments and the similarity of the query protein to known 3D folds. CS23D is accessible at

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center