Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Endocrinol. 2008 Aug;22(8):1797-811. doi: 10.1210/me.2007-0439. Epub 2008 May 29.

The nuclear receptor Rev-erbalpha is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages.

Author information

1
Institut National de la Santé et de la Recherche Médicale, Unité 545, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Boite Postale 245, Lille 59019, France.

Abstract

A role of the nuclear receptor Rev-erbalpha in the regulation of transcription pathways involving other nuclear receptors is emerging. Indeed, Rev-erbalpha is a negative regulator of transcription by binding to overlapping response elements shared with various nuclear receptors, including the peroxisome proliferator-activated receptors and the retinoid-related orphan receptor alpha (RORalpha). Here, we show that Rev-erbalpha is expressed in primary human macrophages and that its expression is induced by synthetic ligands for the liver X receptors (LXRs), which control cholesterol homeostasis, inflammation, and the immune response in macrophages. LXRalpha binds to a specific response element in the human Rev-erbalpha promoter, thus inducing Rev-erbalpha transcriptional expression. Interestingly, Rev-erbalpha does not influence basal or LXR-regulated cholesterol homeostasis. However, Rev-erbalpha overexpression represses the induction of toll-like receptor (TLR)-4 by LXR agonists, whereas Rev-erbalpha silencing by short interfering RNA results in enhanced TLR-4 expression upon LXR activation. Electrophoretic mobility shift, chromatin immunoprecipitation, and transient transfection experiments demonstrate that Rev-erbalpha represses human TLR-4 promoter activity by binding as a monomer to a RevRE site overlapping with the LXR response element site in the TLR-4 promoter. These data identify Rev-erbalpha as a new LXR target gene, inhibiting LXR-induction of TLR-4 in a negative transcriptional feedback loop, but not cholesterol homeostasis gene expression.

PMID:
18511497
PMCID:
PMC5419447
DOI:
10.1210/me.2007-0439
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center