Send to

Choose Destination
See comment in PubMed Commons below
Yeast. 2008 Jun;25(6):419-32. doi: 10.1002/yea.1596.

Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes.

Author information

  • 1Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8530, Japan.


Genomic analysis of industrial yeast strains is important for exploitation of their potential. We analysed the genomic structure of the most widely used sake yeast strain, Kyokai no. 7 (K7), by DNA microarray. Since the analysis suggested that the copy number of the AQY1-ARR3 region in the right arm of chromosome XVI was amplified, we performed Southern blot analysis using the AQY1 gene as a probe. The probe hybridized to three bands in the widely used sake strains derived from K7, but only to one band of 1.4 kb in the laboratory strains. Since the extra two bands were not observed in old sake strains, or in other industrial strains, the amplification of this region appeared to be specific for the widely used sake strains. The copy number of the AQY1-ARR3 region appeared to have increased by chromosomal translocation, since chromosomal Southern blot analysis revealed that the AQY1 probe hybridized to chromosomes IV and XIII, in addition to chromosome XVI, in which AQY1 of the laboratory strain is encoded. The chromosomal translocation was also confirmed by PCR analysis using primers that amplify the region containing the breakpoint. Cloning and sequencing of cosmids that encode the AQY1-ARR3 region revealed that this region is flanked by TG(1-3) repeats on the centromere-proximal side in chromosomes IV and XIII, suggesting that amplification of this region occurred by homologous recombination through TG(1-3) repeats. These results demonstrate the genomic characteristics of the modern widely used sake strains that discriminate them from other strains.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Research Materials

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center