Format

Send to

Choose Destination
Eur Radiol. 2008 Oct;18(10):2311-20. doi: 10.1007/s00330-008-1009-7. Epub 2008 May 29.

Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis.

Author information

1
Department of Radiology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands. b.moraal@vumc.nl

Abstract

To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion-recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting multiple sclerosis (MS) brain lesions compared to 2D T2-weighted spin-echo (T2SE). All single-slab 3D sequences and 2D-T2SE were acquired in 16 MS patients and 9 age-matched healthy controls. Lesions were scored independently by two raters and characterized anatomically. Two-tailed Bonferroni-corrected Student's t-tests were used to detect differences in lesion detection between the various sequences per anatomical area after log-transformation. In general, signal and contrast properties of the 3D sequences enabled improved detection of MS brain lesions compared to 2D-T2SE. Specifically, 3D-DIR showed the highest detection of intracortical and mixed WM-GM lesions, whereas 3D-FLAIR showed the highest total number of WM lesions. Both 3D-DIR and 3D-FLAIR showed the highest number of infratentorial lesions. 3D-T2 and 3D-MPRAGE did not improve lesion detection compared to 2D-T2SE. Multi-contrast, isotropic, single-slab 3D MRI allowed an improved detection of both GM and WM lesions compared to 2D-T2SE. A selection of single-slab 3D contrasts, for example, 3D-FLAIR and 3D-DIR, could replace 2D sequences in the radiological practice.

PMID:
18509658
DOI:
10.1007/s00330-008-1009-7
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center