Format

Send to

Choose Destination
See comment in PubMed Commons below
Learn Mem. 2008 May 28;15(6):403-11. doi: 10.1101/lm.830008. Print 2008 Jun.

Activation of exchange protein activated by cyclic-AMP enhances long-lasting synaptic potentiation in the hippocampus.

Author information

  • 1Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada.

Abstract

cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term potentiation (LTP) of synaptic strength. However, cAMP may also initiate signaling via a guanine nucleotide exchange protein directly activated by cAMP (Epac). The role of Epac in hippocampal synaptic plasticity is unknown. We found that in area CA1 of mouse hippocampal slices, activation of Epac enhances maintenance of LTP without affecting basal synaptic transmission. The persistence of this form of LTP requires extracellular signal-regulated protein kinase (ERK) and new protein synthesis, but not transcription. Because ERK is involved in translational control of long-lasting plasticity and memory, our data suggest that Epac is a crucial link between cAMP and ERK during some forms of protein synthesis-dependent LTP. Activation of Epac represents a novel signaling pathway for rapid regulation of the stability of enduring forms of LTP and, perhaps, of hippocampus- dependent long-term memories.

PMID:
18509114
PMCID:
PMC2414251
DOI:
10.1101/lm.830008
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center