Format

Send to

Choose Destination
J Neurochem. 2008 Aug;106(4):1563-76. doi: 10.1111/j.1471-4159.2008.05501.x. Epub 2008 Jun 28.

Endoplasmic reticulum Ca2+ dysregulation and endoplasmic reticulum stress following in vitro neuronal ischemia: role of Na+-K+-Cl- cotransporter.

Author information

1
Neuroscience Training Program, and Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Abstract

We investigated the role of Na(+)-K(+)-Cl(-) cotransporter (NKCC1) in conjunction with Na(+)/Ca(2+) exchanger (NCX) in disruption of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress development in primary cortical neurons following in vitro ischemia. Oxygen-glucose deprivation (OGD) and reoxygenation (REOX) caused a rise in [Na(+)](cyt) which was accompanied by an elevation in [Ca(2+)](cyt). Inhibition of NKCC1 with its potent inhibitor bumetanide abolished the OGD/REOX-induced rise in [Na(+)](cyt) and [Ca(2+)](cyt). Moreover, OGD significantly increased Ca(2+)(ER) accumulation. Following REOX, a biphasic change in Ca(2+)(ER) occurred with an initial release of Ca(2+)(ER) which was sensitive to inositol 1,4,5-trisphosphate receptor (IP(3)R) inhibition and a subsequent refilling of Ca(2+)(ER) stores. Inhibition of NKCC1 activity with its inhibitor or genetic ablation prevented the release of Ca(2+)(ER). A similar result was obtained with inhibition of reversed mode operation of NCX (NCX(rev)). OGD/REOX also triggered a transient increase of glucose regulated protein 78 (GRP78), phospho-form of the alpha subunit of eukaryotic initiation factor 2 (p-eIF2alpha), and cleaved caspase 12 proteins. Pre-treatment of neurons with NKCC1 inhibitor bumetanide inhibited upregulation of GRP78 and attenuated the level of cleaved caspase 12 and p-eIF2alpha. Inhibition of NKCC1 reduced cytochrome C release and neuronal death. Taken together, these results suggest that NKCC1 and NCX(rev) may be involved in ischemic cell damage in part via disrupting ER Ca(2+) homeostasis and ER function.

PMID:
18507737
PMCID:
PMC2834254
DOI:
10.1111/j.1471-4159.2008.05501.x
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center