Send to

Choose Destination
Mol Divers. 2008 Feb;12(1):41-5. doi: 10.1007/s11030-008-9073-0. Epub 2008 May 28.

Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins.

Author information

School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.


In this paper, AdaBoost algorithm, a popular and effective prediction method, is applied to predict the subcellular locations of Prokaryotic and Eukaryotic Proteins-a dataset derived from SWISSPROT 33.0. Its prediction ability was evaluated by re-substitution test, Leave-One-Out Cross validation (LOOCV) and jackknife test. By comparing its results with some most popular predictors such as Discriminant Function, neural networks, and SVM, we demonstrated that the AdaBoost predictor outperformed these predictors. As a result, we arrive at the conclusion that AdaBoost algorithm could be employed as a robust method to predict subcellular location. An online web server for predicting subcellular location of prokaryotic and eukaryotic proteins is available at .

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center