Format

Send to

Choose Destination
See comment in PubMed Commons below
Circulation. 2008 Jun 3;117(22):2919-27. doi: 10.1161/CIRCULATIONAHA.107.754614. Epub 2008 May 27.

Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points.

Author information

1
Hughes Medical Institute, Chevy Chase, MD, USA.

Abstract

BACKGROUND:

Extracellular deposition of low-density lipoprotein (LDL) in the arterial wall is an essential early step in atherosclerosis. This process preferentially occurs at arterial branch points, reflecting a regional variation in lipoprotein-arterial wall interactions. In this study, we characterized the submicron microstructure of arterial wall collagen and elastin to evaluate its potential role in regional LDL deposition.

METHODS AND RESULTS:

With 2-photon microscopy, we used the intrinsic optical properties of collagen and elastin to determine the arterial wall macromolecular microstructure in fresh porcine and murine arteries. This optical approach generated unique nondestructive en face 3-dimensional views of the wall. The collagen/elastin microstructure was found to vary with the topology of the arterial bed. A nearly confluent elastin surface layer was present throughout but was missing at atherosclerosis-susceptible branch points, exposing dense collagen-proteoglycan complexes. In LDL binding studies, this luminal elastin layer limited LDL penetration, whereas its absence at the branches resulted in extensive LDL binding. Furthermore, LDL colocalized with proteoglycans with a sigmoidal dose dependence (inflection point, approximately 130 mg LDL/dL). Ionic strength and competing anions studies were consistent with the initial interaction of LDL with proteoglycans to be electrostatic in nature.

CONCLUSIONS:

This optical sectioning approach provided a robust 3-dimensional collagen/elastin microstructure of the arterial wall in fresh samples. At atherosclerosis-susceptible vascular branch points, the absence of a luminal elastin barrier and the presence of a dense collagen/proteoglycan matrix contribute to increased retention of LDL.

PMID:
18506002
PMCID:
PMC2699462
DOI:
10.1161/CIRCULATIONAHA.107.754614
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center