Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Nutr Food Res. 2008 Jun;52 Suppl 1:S52-61. doi: 10.1002/mnfr.200700448.

Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention.

Author information

1
Division of Hematology/Oncology and Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA.

Abstract

Resveratrol is a bioflavonoid which is known to inhibit cell proliferation and induce apoptosis in cancer cell lines at concentrations above 50 muM. It also has colon cancer prevention activity in mouse models and possibly in humans. We have examined the effects of low concentrations of resveratrol on a specific signaling pathway, the Wnt pathway, which is activated in over 85% of sporadic colon cancers. Two colon cancer (HT29 and RKO) and one normal mucosa-derived (NCM460) cell lines were utilized. Cell proliferation was not affected by resveratrol at < or =40 microM for HT29 and NCM460 and <20 microM for RKO though Wnt signal throughput, as measured by a reporter construct, was reduced in RKO and NCM460 at concentrations as low as 10 microM (p < 0.001). This effect was most easily appreciated following Wnt pathway stimulation with Wnt3a conditioned medium and LEF1 or LEF1/beta-catenin transfection. Resveratrol did not inhibit Wnt throughput in mutationally activated HT29. Low concentrations of resveratrol significantly decreased the amount and proportion of beta-catenin in the nucleus in RKO (p = 0.002) and reduced the expression of lgs and pygoI, regulators of beta-catenin localization, in all cells lines. Thus, at low concentrations, in the absence of effects on cell proliferation, resveratrol significantly inhibits Wnt signaling in colon-derived cells which do not have a basally activated Wnt pathway. This inhibitory effect may be due in part to regulation of intracellular beta-catenin localization.

PMID:
18504708
PMCID:
PMC2519107
DOI:
10.1002/mnfr.200700448
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center