Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2008 Sep;95(5):2356-67. doi: 10.1529/biophysj.108.132662. Epub 2008 May 23.

Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data.

Author information

Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada.


Quantitative structures were obtained for the fully hydrated fluid phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data for DOPC included two solvent contrasts, 50% and 100% D(2)O. For DPPC, additional contrast data were obtained with deuterated analogs DPPC_d62, DPPC_d13, and DPPC_d9. For the analysis, we developed a model that is based on volume probability distributions and their spatial conservation. The model's design was guided and tested by a DOPC molecular dynamics simulation. The model consistently captures the salient features found in both electron and neutron scattering density profiles. A key result of the analysis is the molecular surface area, A. For DPPC at 50 degrees C A = 63.0 A(2), whereas for DOPC at 30 degrees C A = 67.4 A(2), with estimated uncertainties of 1 A(2). Although A for DPPC agrees with a recently reported value obtained solely from the analysis of x-ray scattering data, A for DOPC is almost 10% smaller. This improved method for determining lipid areas helps to reconcile long-standing differences in the values of lipid areas obtained from stand-alone x-ray and neutron scattering experiments and poses new challenges for molecular dynamics simulations.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center