Format

Send to

Choose Destination
See comment in PubMed Commons below
Gen Comp Endocrinol. 2008 Jun;157(2):148-55. doi: 10.1016/j.ygcen.2008.04.003. Epub 2008 Apr 14.

Sequences, expression patterns and regulation of the corticotropin-releasing factor system in a teleost.

Author information

1
Stanford University, Stanford, CA 94305-5020, USA. purepure@stanford.edu

Abstract

Corticotropin-releasing factor (CRF) is well known for its role in regulating the stress response in vertebrate species by controlling release of glucocorticoids. CRF also influences other physiological processes via two distinct CRF receptors (CRF-Rs) and is co-regulated by a CRF binding protein (CRFBP). Although CRF was first discovered in mammals, it is important for the regulation of the stress response, motor behavior, and appetite in all vertebrates. However, it is unclear how the actions of CRF, CRF-Rs, and CRFBP are coordinated. To approach this problem, we cloned and identified CRF, CRF-Rs, and CRFBP in a teleost fish model system, Astatotilapia burtoni and mapped their expression patterns in the body and brain. We found that CRF, CRFBP, and CRF-Rs gene sequences are highly conserved across vertebrates, suggesting that the CRF system plays an essential role in survival. Members of the CRF system are expressed widely in the brain, retina, gill, spleen, muscle, and kidney, thereby implicating them in a variety of bodily functions, including vision, respiration, digestion, and movement. We also found that following long-term social stress, mRNA expression of CRF in the brain and CRF type 1 receptor in the pituitary decrease whereas CRFBP in the pituitary increases via a homeostatic mechanism.

PMID:
18501902
PMCID:
PMC3357958
DOI:
10.1016/j.ygcen.2008.04.003
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center