Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Aug 1;283(31):21501-8. doi: 10.1074/jbc.M803090200. Epub 2008 May 21.

The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua.

Author information

  • 1Plant Biotechnology Institute, 110 Gymnasium Pl., Saskatoon, Saskatchewan, Canada.

Abstract

At some point during biosynthesis of the antimalarial artemisinin in glandular trichomes of Artemisia annua, the Delta11(13) double bond originating in amorpha-4,11-diene is reduced. This is thought to occur in artemisinic aldehyde, but other intermediates have been suggested. In an effort to understand double bond reduction in artemisinin biosynthesis, extracts of A. annua flower buds were investigated and found to contain artemisinic aldehyde Delta11(13) double bond reductase activity. Through a combination of partial protein purification, mass spectrometry, and expressed sequence tag analysis, a cDNA clone corresponding to the enzyme was isolated. The corresponding gene Dbr2, encoding a member of the enoate reductase family with similarity to plant 12-oxophytodienoate reductases, was found to be highly expressed in glandular trichomes. Recombinant Dbr2 was subsequently characterized and shown to be relatively specific for artemisinic aldehyde and to have some activity on small alpha,beta-unsaturated carbonyl compounds. Expression in yeast of Dbr2 and genes encoding four other enzymes in the artemisinin pathway resulted in the accumulation of dihydroartemsinic acid. The relevance of Dbr2 to trichome-specific artemisinin biosynthesis is discussed.

PMID:
18495659
DOI:
10.1074/jbc.M803090200
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center