Format

Send to

Choose Destination
See comment in PubMed Commons below
J Transl Med. 2008 May 19;6:26. doi: 10.1186/1479-5876-6-26.

Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice.

Author information

1
Neumedicines Inc., 2275 East Foothill Blvd., Pasadena, California, USA. basile@neumedicines.com

Abstract

BACKGROUND:

Interleukin-12 (IL-12) is a cytokine well known for its role in immunity. A lesser known function of IL-12 is its role in hematopoiesis. The promising data obtained in the preclinical models of antitumor immunotherapy raised hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity, largely due to repeat dose regimens, and modest clinical response observed in the clinical trials have pointed to the necessity to design protocols that minimize toxicity without affecting the anti-tumor effect of IL-12. We have focused on the lesser known role of IL-12 in hematopoiesis and hypothesized that an important clinical role for IL-12 in cancer may be as an adjuvant hematological cancer therapy. In this putative clinical function, IL-12 is utilized for the prevention of cancer therapy-related cytopenias, while providing concomitant anti-tumor responses over and above responses observed with the primary therapy alone. This putative clinical function of IL-12 focuses on the dual role of IL-12 in hematopoiesis and immunity.

METHODS:

We assessed the ability of IL-12 to facilitate hematopoietic recovery from radiation (625 rad) and chemotherapy (cyclophosphamide) in two tumor-bearing murine models, namely the EL4 lymphoma and the Lewis lung cancer models. Antitumor effects and changes in bone marrow cellularity were also assessed.

RESULTS:

We show herein that carefully designed protocols, in mice, utilizing IL-12 as an adjuvant to radiation or chemotherapy yield facile and consistent, multilineage hematopoietic recovery from cancer therapy-induced cytopenias, as compared to vehicle and the clinically-utilized cytokine granulocyte colony-stimulating factor (G-CSF) (positive control), while still providing concomitant antitumor responses over and above the effects of the primary therapy alone. Moreover, our protocol design utilizes single, low doses of IL-12 that did not yield any apparent toxicity.

CONCLUSION:

Our results portend that despite its past failure, IL-12 appears to have significant clinical potential as a hematological adjuvant cancer therapy.

PMID:
18489769
PMCID:
PMC2424034
DOI:
10.1186/1479-5876-6-26
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center