Send to

Choose Destination
See comment in PubMed Commons below
Geochem Trans. 2008 May 19;9:5. doi: 10.1186/1467-4866-9-5.

Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle.

Author information

Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA.


Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200 degrees C), borosilicate septum bottles (70 degrees C) and HDPE tubes (22 degrees C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center