Send to

Choose Destination
Med Oncol. 2008;25(2):172-7. doi: 10.1007/s12032-007-9016-0. Epub 2007 Oct 6.

Effects of a selective cyclooxygenase-2 inhibitor, nimesulide, on the growth of ovarian carcinoma in vivo.

Author information

Department of Gynecology and Obstetrics, Nanjing Medical University of Hangzhou Hospital, Hangzhou 310006, PR China.


New therapies against cancer are based on targeting cyclooxygenase-2 (COX-2). Whether COX-2 inhibitor therapy would be beneficial in the prevention and/or treatment of ovarian cancer still remains unclear. This study was designed to investigate whether nimesulide, a COX-2 selective inhibitor, could suppress tumor growth in implanted ovarian carcinoma mice and to explore the molecular mechanisms. Human ovarian SKOV-3 carcinoma cells xenograft-bearing mice were treated with nimesulide 62.5 mg/kg or 250 mg/kg alone i.g., daily for 21 days. Microvessel density (MVD) of ovarian carcinoma was determined with anti-CD(34) as the label. Prostaglandin E2 (PGE2) levels were also determined by ELISA. In addition, the expression of COX-2 and COX-1 at protein and mRNA levels in the control groups was also detected by immunohistochemistry and reverse-transcription polymerase chain reaction (RT-PCR). Nimesulide treatment showed a dose-dependent growth-inhibitory effect of human ovarian SKOV-3 tumors. The inhibitory rates in nimesulide 62.5 mg/kg group and 250 mg/kg group were 20.40% and 50.55% respectively, however, which is not significant statistically compared with that of control group (P > 0.05). In treatment groups, nimesulide significantly reduced intratumor PGE2 levels (all, P < 0.01). Microvessel densities in treatment groups were 61.20 +/- 1.67 (62.5 mg/kg) and 66.27 +/- 1.20 (250 mg/kg), which are significant statistically compared with that of control group (79.97 +/- 1.07) (all, P < 0.01). However, COX-1, not COX-2, mRNA, and protein levels are elevated in tumor tissues. Nimesulide decreased microvessel density is associated with the reduction of PGE2 levels but without affecting growth inhibition and the expression of COX-2. Importantly, tumor growth implanted in SKOV-3 mice was not significantly attenuated suggesting that COX-1 in ovarian carcinoma tissue also has an important role in tumor growth. These findings may implicate COX-1 as a suitable target for the treatment of ovarian cancer.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center