Send to

Choose Destination
See comment in PubMed Commons below
Magn Reson Imaging. 2008 Nov;26(9):1201-6. doi: 10.1016/j.mri.2008.03.006. Epub 2008 May 16.

Phased array 3D MR spectroscopic imaging of the brain at 7 T.

Author information

  • 1Joint UCSF/UC Berkeley Graduate Group in Bioengineering, University of California, San Francisco and Berkeley, CA 94143, USA.


Ultra-high-field 7 T magnetic resonance (MR) scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7 T human single-voxel MR Spectroscopy (MRS) studies have shown significant increases in signal-to-noise ratio (SNR) and spectral resolution as compared to lower magnetic fields but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7 T MR spectroscopic imaging. The goal of this study was to develop specialized radiofrequency (RF) pulses and sequences for three-dimensional (3D) MR spectroscopic imaging (MRSI) at 7 T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7 T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high-SNR phased-array 3D MRSI from the human brain.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center