Format

Send to

Choose Destination
Brain Res. 2008 Jun 18;1215:97-104. doi: 10.1016/j.brainres.2008.03.067. Epub 2008 Apr 6.

Cholinergic modulation of local pyramid-interneuron synapses exhibiting divergent short-term dynamics in rat sensory cortex.

Author information

1
New York University Center for Neural Science, New York, NY 10003, USA. rlevy@cns.nyu.edu

Abstract

Acetylcholine (ACh) influences attention, short-term memory, and sleep/waking transitions, through its modulatory influence on cortical neurons. It has been proposed that behavioral state changes mediated by ACh result from its selective effects on the intrinsic membrane properties of diverse cortical inhibitory interneuron classes. ACh has been widely shown to reduce the strength of excitatory (glutamatergic) synapses. But past studies using extracellular stimulation have not been able to examine the effects of ACh on local cortical connections important for shaping sensory processing. Here, using dual intracellular recording in slices of rat somatosensory cortex, we show that reduction of local excitatory input to inhibitory neurons by ACh is coupled to differences in the underlying short-term synaptic plasticity (STP). In synapses with short-term depression, where successive evoked excitatory postsynaptic potentials (EPSPs; >5 Hz) usually diminish in strength (short-term depression), cholinergic agonist (5-10 microM carbachol (CCh)) reduced the amplitude of the first EPSP in an evoked train, but CCh's net effect on subsequent EPSPs rapidly diminished. In synapses where successive EPSPs increased in strength (facilitation), the effect of CCh on later EPSPs in an evoked train became progressively greater. The effect of CCh on both depressing and facilitating synapses was blocked by the muscarinic antagonist, 1-5 microM atropine. It is suggested that selective influence on STP contributes fundamentally to cholinergic "switching" between cortical rhythms that underlie different behavioral states.

PMID:
18482715
PMCID:
PMC2483424
DOI:
10.1016/j.brainres.2008.03.067
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center