Send to

Choose Destination
Biochem Soc Trans. 2008 Jun;36(Pt 3):290-3. doi: 10.1042/BST0360290.

Insulin signalling in islets.

Author information

Beta Cell Development & Function Group, King's College London, London, UK.


Studies in transgenic animals, rodent insulin-secreting cell lines and rodent islets suggest that insulin acts in an autocrine manner to regulate beta-cell mass and gene expression. Very little is known about the in vitro roles played by insulin in human islets, and the regulatory role of insulin in protecting against beta-cell apoptosis. We have identified mRNAs encoding IRs (insulin receptors) and downstream signalling elements in dissociated human islet beta-cells by single-cell RT (reverse transcription)-PCR, and perifusion studies have indicated that insulin does not have an autocrine role to regulate insulin secretion from human islets, but activation of the closely related IGF-1 (insulin-like growth factor 1) receptors is linked to inhibition of insulin secretion. Knockdown of IR mRNA by siRNAs (small interfering RNAs) decreased IR protein expression without affecting IGF-1 receptor levels, and blocked glucose stimulation of preproinsulin gene expression. Similar results were obtained when human islet IRS (IR substrate)-2 was knocked down, whereas depletion of IRS-1 caused an increase in preproinsulin mRNA levels. Studies using the mouse MIN6 beta-cell line indicated that glucose protected beta-cells from undergoing apoptosis and that this was a consequence, at least in part, of insulin release in response to elevated glucose. IGF-1 also exerted anti-apoptotic effects. These data indicate that insulin can exert autocrine effects in human islets through receptors on beta-cells. It protects beta-cells against apoptosis and increases preproinsulin mRNA synthesis, but does not affect insulin secretion.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center