Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2008 May 7;28(19):4982-94. doi: 10.1523/JNEUROSCI.0186-08.2008.

Interdomain cytoplasmic interactions govern the intracellular trafficking, gating, and modulation of the Kv2.1 channel.

Author information

Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616, USA.


Voltage-gated potassium (Kv) channels comprise four transmembrane alpha subunits, often associated with cytoplasmic beta subunits that impact channel expression and function. Here, we show that cell surface expression, voltage-dependent activation gating, and phosphorylation-dependent modulation of Kv2.1 are regulated by cytoplasmic N/C interaction within the alpha subunit. Kv2.1 surface expression is greatly reduced by C-terminal truncation. Tailless Kv2.1 channels exhibit altered voltage-dependent gating properties and lack the bulk of the phosphorylation-dependent modulation of channel gating. Remarkably, the soluble C terminus of Kv2.1 associates with tailless channels and rescues their expression, function, and phosphorylation-dependent modulation. Soluble N and C termini of Kv2.1 can also interact directly. We also show that the N/C-terminal interaction in Kv2.1 is governed by a 34 aa motif in the juxtamembrane cytoplasmic C terminus, and a 17 aa motif located in the N terminus at a position equivalent to the beta subunit binding site in other Kv channels. Deletion of either motif disrupts N/C-terminal interaction and surface expression, function, and phosphorylation-dependent modulation of Kv2.1 channels. These findings provide novel insights into intrinsic mechanisms for the regulation of Kv2.1 trafficking, gating, and phosphorylation-dependent modulation through cytoplasmic N/C-terminal interaction, which resembles alpha/beta subunit interaction in other Kv channels.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center