Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6942-7. doi: 10.1073/pnas.0802627105. Epub 2008 May 6.

Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2.

Author information

1
Department of Biochemistry and Molecular Biology, M. D. Anderson Cancer Center and Graduate Training Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA. xiumu@mdanderson.org

Abstract

Understanding gene regulatory networks (GRNs) that control neuronal differentiation will provide systems-level perspectives on neurogenesis. We have previously constructed a model for a GRN in retinal ganglion cell (RGC) differentiation in which four hierarchical tiers of transcription factors ultimately control the expression of downstream terminal genes. Math5 occupies a central node in the hierarchy because it is essential for the formation of RGCs and the expression of the immediate downstream factor Pou4f2. Based on its expression, we also proposed that Isl1, a LIM-homeodomain factor, functions in parallel with Pou4f2 and downstream of Math5 in the RGC GRN. To determine whether this was the case, a conditional Isl1 allele was generated and deleted specifically in the developing retina. Although RGCs formed in Isl1-deleted retinas, most underwent apoptosis, and few remained at later stages. By microarray analysis, we identified a distinct set of genes whose expression depended on Isl1. These genes are all downstream of Math5, and some of them, but not all, also depend on Pou4f2. Additionally, Isl1 was required for the sustained expression of Pou4f2, suggesting that Isl1 positively regulates Pou4f2 after Math5 levels are diminished. The results demonstrate an essential role for Isl1 in RGC development and reveal two distinct but intersecting branches of the RGC GRN downstream of Math5, one directed by Pou4f2 and the other by Isl1. They also reveal that identical RGC expression patterns are achieved by different combinations of divergent inputs from upstream transcription factors.

PMID:
18460603
PMCID:
PMC2383966
DOI:
10.1073/pnas.0802627105
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center