Send to

Choose Destination
IEEE Trans Biomed Eng. 2008 May;55(5):1463-76. doi: 10.1109/TBME.2008.918554.

A radius and ulna TW3 bone age assessment system.

Author information

Department of Teoría de la Señal y Comunicaciones, University of Valladolid, 47011 Valladolid, Spain.


An end-to-end system to automate the well-known Tanner--Whitehouse (TW3) clinical procedure to estimate the skeletal age in childhood is proposed. The system comprises the detailed analysis of the two most important bones in TW3: the radius and ulna wrist bones. First, a modified version of an adaptive clustering segmentation algorithm is presented to properly semi-automatically segment the contour of the bones. Second, up to 89 features are defined and extracted from bone contours and gray scale information inside the contour, followed by some well-founded feature selection mathematical criteria, based on the ideas of maximizing the classes' separability. Third, bone age is estimated with the help of a Generalized Softmax Perceptron (GSP) neural network (NN) that, after supervised learning and optimal complexity estimation via the application of the recently developed Posterior Probability Model Selection (PPMS) algorithm, is able to accurately predict the different development stages in both radius and ulna from which and with the help of the TW3 methodology, we are able to conveniently score and estimate the bone age of a patient in years, in what can be understood as a multiple-class (multiple stages) pattern recognition approach with posterior probability estimation. Finally, numerical results are presented to evaluate the system performance in predicting the bone stages and the final patient bone age over a private hand image database, with the help of the pediatricians and the radiologists expert diagnoses.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center