Send to

Choose Destination
See comment in PubMed Commons below
Photochem Photobiol. 2008 May-Jun;84(3):727-33. doi: 10.1111/j.1751-1097.2007.00243.x.

Modulation of psoralen DNA crosslinking kinetics associated with a triplex-forming oligonucleotide.

Author information

  • 1Department of Dermatology, University of California, San Francisco, and Dermatology Research Unit, San Francisco VA Medical Center, San Francisco, CA, USA.


A triplex-forming oligonucleotide (TFO), HPRT3, conjugated to a psoralen derivative, was designed to target a psoralen reaction site within the HPRT gene. HPRT3 bound with high affinity to a synthetic duplex target sequence. At a uniform UVA radiation dose, the ratio of psoralen monoadducts (MA) to interstrand crosslinks decreased and inverted with increasing TFO concentration. As the TFO concentration increased from 10 nm to 10 microm, the efficiency of psoralen MA formation remained relatively constant but the efficiency of interstrand crosslink formation increased several-fold. Neither shortening the TFO to reduce its dissociation constant nor altering the DNA sequences flanking the TFO binding site altered the concentration dependence of MA and crosslink yields. The psoralen photokinetics associated with 10 nm HPRT3 converted to those associated with 10 microm HPRT3 with the addition of other unrelated TFOs at 10 microm that do not specifically interact with the HPRT3 target sequence. Glycerol at concentrations of 0.5% (vol/vol) or higher also mimicked high TFO concentrations in enhancing crosslink formation. These results demonstrate that while psoralen may be targeted to react at a particular sequence by TFOs, photoreactivity associated with triplex formation is also modulated by sequence-independent factors that may affect the local macromolecular environment.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center