Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2008 Jul;295(1):F153-64. doi: 10.1152/ajprenal.00419.2007. Epub 2008 Apr 23.

TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae.

Author information

1
Division of Nephrology, McMaster University, Hamilton, Ontario, Canada.

Abstract

Glomerular sclerosis of diverse etiologies is characterized by mesangial matrix accumulation, with transforming growth factor-beta (TGFbeta) an important pathogenic factor. The GTPase RhoA mediates TGFbeta-induced matrix accumulation in some settings. Here we study the role of the membrane microdomain caveolae in TGFbeta-induced RhoA activation and fibronectin upregulation in mesangial cells (MC). In primary rat MC, TGFbeta1 time dependently increased RhoA and downstream Rho kinase activation. Rho pathway inhibition blocked TGFbeta1-induced upregulation of fibronectin transcript and protein. TGFbeta1-induced RhoA activation was prevented by disrupting caveolae with cholesterol depletion and rescued by cholesterol repletion. Compared with wild types, RhoA/Rho kinase activation was absent in MC lacking caveolae. Reexpression of caveolin-1 (and caveolae) restored these responses. Phosphorylation of caveolin-1 on Y14, effected by Src kinases, has been implicated in signaling responses. Overexpression of nonphosphorylatable caveolin-1 Y14A prevented TGFbeta1-induced RhoA activation. TGFbeta1 also activated Src, and its inhibition blocked RhoA activation. Furthermore, TGFbeta1 led to association of RhoA and caveolin-1. This was prevented by Src or TGFbeta receptor I inhibition, and by caveolin-1 Y14A overexpression. Last, fibronectin upregulation by TGFbeta1 was blocked by Src inhibition, not seen in caveolin-1 knockout MC, and restored by caveolin-1 reexpression in the latter. TGFbeta1-induced collagen I accumulation also required caveolae. TGFbeta1-mediated Smad2/3 activation, however, did not require caveolae. We conclude that RhoA/Rho kinase mediates TGFbeta-induced fibronectin upregulation. This requires caveolae and caveolin-1 interaction with RhoA. Interference with caveolin/caveolae or RhoA signaling thus represents a potential target for the treatment of fibrotic renal disease.

PMID:
18434385
PMCID:
PMC2494513
DOI:
10.1152/ajprenal.00419.2007
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center