Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2008 Jul;295(1):F153-64. doi: 10.1152/ajprenal.00419.2007. Epub 2008 Apr 23.

TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae.

Author information

Division of Nephrology, McMaster University, Hamilton, Ontario, Canada.


Glomerular sclerosis of diverse etiologies is characterized by mesangial matrix accumulation, with transforming growth factor-beta (TGFbeta) an important pathogenic factor. The GTPase RhoA mediates TGFbeta-induced matrix accumulation in some settings. Here we study the role of the membrane microdomain caveolae in TGFbeta-induced RhoA activation and fibronectin upregulation in mesangial cells (MC). In primary rat MC, TGFbeta1 time dependently increased RhoA and downstream Rho kinase activation. Rho pathway inhibition blocked TGFbeta1-induced upregulation of fibronectin transcript and protein. TGFbeta1-induced RhoA activation was prevented by disrupting caveolae with cholesterol depletion and rescued by cholesterol repletion. Compared with wild types, RhoA/Rho kinase activation was absent in MC lacking caveolae. Reexpression of caveolin-1 (and caveolae) restored these responses. Phosphorylation of caveolin-1 on Y14, effected by Src kinases, has been implicated in signaling responses. Overexpression of nonphosphorylatable caveolin-1 Y14A prevented TGFbeta1-induced RhoA activation. TGFbeta1 also activated Src, and its inhibition blocked RhoA activation. Furthermore, TGFbeta1 led to association of RhoA and caveolin-1. This was prevented by Src or TGFbeta receptor I inhibition, and by caveolin-1 Y14A overexpression. Last, fibronectin upregulation by TGFbeta1 was blocked by Src inhibition, not seen in caveolin-1 knockout MC, and restored by caveolin-1 reexpression in the latter. TGFbeta1-induced collagen I accumulation also required caveolae. TGFbeta1-mediated Smad2/3 activation, however, did not require caveolae. We conclude that RhoA/Rho kinase mediates TGFbeta-induced fibronectin upregulation. This requires caveolae and caveolin-1 interaction with RhoA. Interference with caveolin/caveolae or RhoA signaling thus represents a potential target for the treatment of fibrotic renal disease.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center