Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2008 Jul 1;41(3):849-85. doi: 10.1016/j.neuroimage.2008.02.054. Epub 2008 Mar 10.

DEM: a variational treatment of dynamic systems.

Author information

1
The Wellcome Department of Imaging Neuroscience, University College London, United Kingdom. k.friston@fil.ion.ucl.ac.uk <k.friston@fil.ion.ucl.ac.uk>

Abstract

This paper presents a variational treatment of dynamic models that furnishes time-dependent conditional densities on the path or trajectory of a system's states and the time-independent densities of its parameters. These are obtained by maximising a variational action with respect to conditional densities, under a fixed-form assumption about their form. The action or path-integral of free-energy represents a lower bound on the model's log-evidence or marginal likelihood required for model selection and averaging. This approach rests on formulating the optimisation dynamically, in generalised coordinates of motion. The resulting scheme can be used for online Bayesian inversion of nonlinear dynamic causal models and is shown to outperform existing approaches, such as Kalman and particle filtering. Furthermore, it provides for dual and triple inferences on a system's states, parameters and hyperparameters using exactly the same principles. We refer to this approach as dynamic expectation maximisation (DEM).

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center