Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2008 Apr;178(4):1937-45. doi: 10.1534/genetics.107.084798.

Distinct functions of MLH3 at recombination hot spots in the mouse.

Author information

1
Department of Biomedical Sciences, Cornell University, Ithaca, New York 14850, USA.

Abstract

The four mammalian MutL homologs (MLH1, MLH3, PMS1, and PMS2) participate in a variety of events, including postreplicative DNA repair, prevention of homeologous recombination, and crossover formation during meiosis. In this latter role, MLH1-MLH3 heterodimers predominate and are essential for prophase I progression. Previous studies demonstrated that mice lacking Mlh1 exhibit a 90% reduction in crossing over at the Psmb9 hot spot while noncrossovers, which do not result in exchange of flanking markers but arise from the same double-strand break event, are unaffected. Using a PCR-based strategy that allows for detailed analysis of crossovers and noncrossovers, we show here that Mlh3(-/-) exhibit a 85-94% reduction in the number of crossovers at the Psmb9 hot spot. Most of the remaining crossovers in Mlh3(-/-) meiocytes represent simple exchanges similar to those seen in wild-type mice, with a small fraction (6%) representing complex events that can extend far from the initiation zone. Interestingly, we detect an increase of noncrossovers in Mlh3(-/-) spermatocytes. These results suggest that MLH3 functions predominantly with MLH1 to promote crossovers, while noncrossover events do not require these activities. Furthermore, these results indicate that approximately 10% of crossovers in the mouse are independent of MLH3, suggesting the existence of alternative crossover pathways in mammals.

PMID:
18430927
PMCID:
PMC2323788
DOI:
10.1534/genetics.107.084798
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center