Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2008 Apr 21;181(2):281-92. doi: 10.1083/jcb.200710009.

Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis.

Author information

1
Institute for Systems Biology, Seattle, WA 98103, USA.

Abstract

Reversible phosphorylation is the most common posttranslational modification used in the regulation of cellular processes. This study of phosphatases and kinases required for peroxisome biogenesis is the first genome-wide analysis of phosphorylation events controlling organelle biogenesis. We evaluate signaling molecule deletion strains of the yeast Saccharomyces cerevisiae for presence of a green fluorescent protein chimera of peroxisomal thiolase, formation of peroxisomes, and peroxisome functionality. We find that distinct signaling networks involving glucose-mediated gene repression, derepression, oleate-mediated induction, and peroxisome formation promote stages of the biogenesis pathway. Additionally, separate classes of signaling proteins are responsible for the regulation of peroxisome number and size. These signaling networks specify the requirements of early and late events of peroxisome biogenesis. Among the numerous signaling proteins involved, Pho85p is exceptional, with functional involvements in both gene expression and peroxisome formation. Our study represents the first global study of signaling networks regulating the biogenesis of an organelle.

Comment in

PMID:
18426976
PMCID:
PMC2315675
DOI:
10.1083/jcb.200710009
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center