Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Med. 2008 May;14(5):510-7. doi: 10.1038/nm1750. Epub 2008 Apr 20.

A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure.

Author information

1
Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, Ohio 45267, USA.

Abstract

Beta-adrenergic receptor (betaAR) blockade is a standard therapy for cardiac failure and ischemia. G protein-coupled receptor kinases (GRKs) desensitize betaARs, suggesting that genetic GRK variants might modify outcomes in these syndromes. Re-sequencing of GRK2 and GRK5 revealed a nonsynonymous polymorphism of GRK5, common in African Americans, in which leucine is substituted for glutamine at position 41. GRK5-Leu41 uncoupled isoproterenol-stimulated responses more effectively than did GRK5-Gln41 in transfected cells and transgenic mice, and, like pharmacological betaAR blockade, GRK5-Leu41 protected against experimental catecholamine-induced cardiomyopathy. Human association studies showed a pharmacogenomic interaction between GRK5-Leu41 and beta-blocker treatment, in which the presence of the GRK5-Leu41 polymorphism was associated with decreased mortality in African Americans with heart failure or cardiac ischemia. In 375 prospectively followed African-American subjects with heart failure, GRK5-Leu41 protected against death or cardiac transplantation. Enhanced betaAR desensitization of excessive catecholamine signaling by GRK5-Leu41 provides a 'genetic beta-blockade' that improves survival in African Americans with heart failure, suggesting a reason for conflicting results of beta-blocker clinical trials in this population.

PMID:
18425130
PMCID:
PMC2596476
DOI:
10.1038/nm1750
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center