Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Jun 27;283(26):17855-63. doi: 10.1074/jbc.M801785200. Epub 2008 Apr 18.

Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase.

Author information

  • 1Center for Biomedical EPR Spectroscopy and Imaging, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA. haitao.li@osumc.edu

Abstract

Recent studies have shown that nitrite is an important storage form and source of NO in biological systems. Controversy remains, however, regarding whether NO formation from nitrite occurs primarily in tissues or in blood. Questions also remain regarding the mechanism, magnitude, and contributions of several alternative pathways of nitrite-dependent NO generation in biological systems. To characterize the mechanism and magnitude of NO generation from nitrite, electron paramagnetic resonance spectroscopy, chemiluminescence NO analyzer, and immunoassays of cGMP formation were performed. The addition of nitrite triggered a large amount of NO generation in tissues such as heart and liver, but only trace NO production in blood. Carbon monoxide increased NO release from blood, suggesting that hemoglobin acts to scavenge NO not to generate it. Administration of the xanthine oxidase (XO) inhibitor oxypurinol or aldehyde oxidase (AO) inhibitor raloxifene significantly decreased NO generation from nitrite in heart or liver. NO formation rates increased dramatically with decreasing pH or with decreased oxygen tension. Isolated enzyme studies further confirm that XO and AO, but not hemoglobin, are critical nitrite reductases. Overall, NO generation from nitrite mainly occurs in tissues not in the blood, with XO and AO playing critical roles in nitrite reduction, and this process is regulated by pH, oxygen tension, nitrite, and reducing substrate concentrations.

PMID:
18424432
PMCID:
PMC2440597
DOI:
10.1074/jbc.M801785200
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center