Send to

Choose Destination
Phys Med Biol. 2008 May 7;53(9):2425-38. doi: 10.1088/0031-9155/53/9/014. Epub 2008 Apr 17.

Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis: a potential functional imaging technique.

Author information

Department of Physics, University of Kuopio, Kuopio, Finland.


Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center