Send to

Choose Destination
Am J Respir Crit Care Med. 2008 Jul 15;178(2):139-48. doi: 10.1164/rccm.200711-1666OC. Epub 2008 Apr 17.

Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease.

Author information

Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia.



Defective efferocytosis (phagocytic clearance of apoptotic cells) in the airway may perpetuate inflammation via secondary necrosis in chronic obstructive pulmonary disease (COPD). We have previously reported that low-dose azithromycin improved alveolar macrophage (AM) phagocytic function in vitro.


We investigated collectins (mannose-binding lectin [MBL] and surfactant protein [SP]-D) and mannose receptor (MR) in COPD and their possible role in the azithromycin-mediated improvement in phagocytosis.


In vitro effects of azithromycin on AM expression of MR were investigated. MBL, SP-D, and MR were measured in patients with COPD and control subjects. Azithromycin (250 mg orally daily for 5 d then twice weekly for 12 wk) was administered to 11 patients with COPD. Assessments included AM phagocytic ability and expression of MR, MBL, SP-D, bronchial epithelial cell apoptosis, pulmonary function, C-reactive protein, blood/BAL leukocyte counts, cytokine production, and T-cell markers of activation and phenotype.


Azithomycin (500 ng/ml) increased MR expression by 50% in vitro. AM MR expression and levels of MBL and SP-D were significantly reduced in patients with COPD compared with control subjects. In patients with COPD, after azithromycin therapy, we observed significantly improved AM phagocytic ability (pre: 9.9%; post: 15.1%), reduced bronchial epithelial cell apoptosis (pre: 30.0%; post: 19.7%), and increased MR and reduced inflammatory markers in the peripheral blood. These findings implicate the MR in the defective phagocytic function of AMs in COPD and as a target for the azithromycin-mediated improvement in phagocytic ability.


Our findings indicate a novel approach to supplement existing therapies in COPD.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center