Send to

Choose Destination
See comment in PubMed Commons below
J Hand Surg Am. 2008 Apr;33(4):503-10. doi: 10.1016/j.jhsa.2007.12.013.

Simulated radioscapholunate fusion alters carpal kinematics while preserving dart-thrower's motion.

Author information

  • 1Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.



Midcarpal degeneration is well documented after radioscapholunate fusion. This study tested the hypothesis that radioscapholunate fusion alters the kinematic behavior of the remaining lunotriquetral and midcarpal joints, with specific focus on the dart-thrower's motion.


Simulated radioscapholunate fusions were performed on 6 cadaveric wrists in an anatomically neutral posture. Two 0.060-in. carbon fiber pins were placed from proximal to distal across the radiolunate and radioscaphoid joints, respectively. The wrists were passively positioned in a custom jig toward a full range of motion along the orthogonal axes as well as oblique motions, with additional intermediate positions along the dart-thrower's path. Using a computed tomography-based markerless bone registration technique, each carpal bone's three-dimensional rotation was defined as a function of wrist flexion/extension from the pinned neutral position. Kinematic data was analyzed against data collected on the same wrist prior to fixation using hierarchical linear regression analysis and paired Student's t-tests.


After simulated fusion, wrist motion was restricted to an average flexion-extension arc of 48 degrees , reduced from 77 degrees , and radial-ulnar deviation arc of 19 degrees , reduced from 33 degrees . The remaining motion was maximally preserved along the dart-thrower's path from radial-extension toward ulnar-flexion. The simulated fusion significantly increased rotation through the scaphotrapezial joint, scaphocapitate joint, triquetrohamate joint, and lunotriquetral joint. For example, in the pinned wrist, the rotation of the hamate relative to the triquetrum increased 85%. Therefore, during every 10 degrees of total wrist motion, the hamate rotated an average of nearly 8 degrees relative to the triquetrum after pinning versus 4 degrees in the normal state.


Simulated radioscapholunate fusion altered midcarpal and lunotriquetral kinematics. The increased rotations across these remaining joints provide one potential explanation for midcarpal degeneration after radioscapholunate fusion. Additionally, this fusion model confirms the dart-thrower's hypothesis, as wrist motion after simulated radioscapholunate fusion was primarily preserved from radial-extension toward ulnar-flexion.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center