Format

Send to

Choose Destination
See comment in PubMed Commons below
Purinergic Signal. 2005 Jun;1(2):101-10. doi: 10.1007/s11302-005-6213-1. Epub 2005 Mar 17.

Responses of the ciliates Tetrahymena and Paramecium to external ATP and GTP.

Author information

  • 1Department of Biological Sciences, University at Buffalo, Amherst, New York, USA, thennes@acsu.buffalo.edu.

Abstract

The unicellular ciliates Paramecium and Tetrahymena are the simplest eukaryotic cells to show reliable depolarizing responses to micromolar concentrations of external ATP and GTP. Their simplicity allows for combined analysis of swimming behavior, electrophysiology, receptor binding, behavioral mutant and drug screens as well as molecular genetic approaches such as RNAi and gene knockouts experiments. ATP and GTP are depolarizing chemorepellents in both ciliates, producing measurable receptor potentials and Ca(2+)-based action potentials that are correlated with jerking behaviors called avoiding reactions (AR). GTP also causes repetitive continuous ciliary reversals (CCR) and oscillating plateau depolarizations in Paramecium. Both ciliates show high affinity, saturable external binding of (32)P-GTP and (32)P-ATP but GTP does not compete for ATP binding and vice versa. Chemosensory adaptation occurs after continued exposure (15 min) to these ligands, producing a loss of external binding and forward swimming. However, cells adapted to ATP still bind and respond to GTP and GTP-adapted cells still bind and respond to ATP. This, combined with pharmacological analyses, suggests that there are two separate receptor systems: A metabotropic ATP receptor pathway and a different, novel GTP receptor pathway. A Paramecium mutant (ginA) lacks the GTP-induced oscillating depolarizations but does show AR in GTP, unveiling isolated GTP-receptor potentials for study. An ecto-ATPase is also present that may be involved in inactivation of ATP and GTP signals. Gene knockout experiments are currently underway to determine the roles of the ecto-ATPase and a putative 7-transmembrane spanning receptor in these responses.

PMID:
18404496
PMCID:
PMC2096533
DOI:
10.1007/s11302-005-6213-1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center