Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2008 Apr 10;47(11):1816-31.

Doppler-free, multiwavelength acousto-optic deflector for two-photon addressing arrays of Rb atoms in a quantum information processor.

Author information

1
Department of Electrical and Computer Engineering, Optoelectronic Computing Systems Center, University of Colorado at Boulder, Boulder, Colorado 80309, USA. sangtaek@colorado.edu

Abstract

We demonstrate a dual wavelength acousto-optic deflector (AOD) designed to deflect two wavelengths to the same angles by driving with two RF frequencies. The AOD is designed as a beam scanner to address two-photon transitions in a two-dimensional array of trapped neutral Rb87 atoms in a quantum computer. Momentum space is used to design AODs that have the same diffraction angles for two wavelengths (780 and 480 nm) and have nonoverlapping Bragg-matched frequency response at these wavelengths, so that there will be no cross talk when proportional frequencies are applied to diffract the two wavelengths. The appropriate crystal orientation, crystal shape, transducer size, and transducer height are determined for an AOD made with a tellurium dioxide crystal (TeO(2)). The designed and fabricated AOD has more than 100 resolvable spots, widely separated band shapes for the two wavelengths within an overall octave bandwidth, spatially overlapping diffraction angles for both wavelengths (780 and 480 nm), and a 4 micros or less access time. Cascaded AODs in which the first device upshifts and the second downshifts allow Doppler-free scanning as required for addressing the narrow atomic resonance without detuning. We experimentally show the diffraction-limited Doppler-free scanning performance and spatial resolution of the designed AOD.

PMID:
18404181
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center