Send to

Choose Destination
Neurobiol Aging. 2010 Jan;31(1):58-73. doi: 10.1016/j.neurobiolaging.2008.03.001. Epub 2008 Apr 10.

Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories.

Author information

Division of Psychiatry Research, University of Zürich, August Forel Street 1, 8008 Zürich, Switzerland.


The beta-amyloid precursor protein (APP) plays a major role in Alzheimer's disease. The APP intracellular domain (AICD), together with Fe65 and Tip60, localizes to spherical nuclear AFT complexes, which may represent sites of transcription. Despite a lack of co-localization with several described nuclear compartments, we have identified a close apposition between AFT complexes and splicing speckles, Cajal bodies and PML bodies. Live imaging revealed that AFT complexes were highly mobile within nuclei and following pharmacological inhibition of transcription fused into larger assemblies. We have previously shown that AICD regulates the expression of its own precursor APP. In support of our earlier findings, transfection of APP promoter plasmids as substrates resulted in cytosolic AFT complex formation at labeled APP promoter plasmids. In addition, identification of chromosomal APP or KAI1 gene loci by fluorescence in situ hybridization showed their close association with nuclear AFT complexes. The transcriptional activator Notch intracellular domain (NICD) localized to the same nuclear spots as occupied by AFT complexes suggesting that these nuclear compartments correspond to transcription factories. Fe65 and Tip60 also co-localized with APP in the neurites of primary neurons. Pre-assembled AFT complexes may serve to assist fast nuclear signaling upon endoproteolytic APP cleavage.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center