Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 2008 May 13;1209:136-50. doi: 10.1016/j.brainres.2008.02.090. Epub 2008 Mar 18.

Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats.

Author information

1
Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.

Abstract

Our previous studies have shown that ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) inhibits intercellular adhesion molecule-1 (ICAM-1) expression in the ischemic striatum after 2 h of reperfusion in a transient middle cerebral artery occlusion model in rats. The purpose of this study is to further investigate the neuroprotective effects of FA during reperfusion after cerebral ischemia. Rats were subjected to 90 min of ischemia; they were then sacrificed after 2, 10, 24 and 36 h of reperfusion. ICAM-1 and macrophage-1 antigen (Mac-1) mRNA were detected using semi-quantitative RT-PCR at 2 h of reperfusion. Mac-1, 4-hydroxy-2-nonenal (4-HNE), 8-hydroxy-2'-deoxyguanosine (8-OHdG), active caspase 3, neuronal nuclei (NeuN) and TUNEL positive cells were measured at 2, 10, 24 and 36 h of reperfusion. FA (100 mg/kg, i.v.) administered immediately after MCAo inhibited ICAM-1 and Mac-1 mRNA expression in the striatum at 2 h of reperfusion, and reduced the number of Mac-1, 4-HNE and 8-OHdG positive cells in the ischemic rim and core at 10, 24 and 36 h of reperfusion. FA decreased TUNEL positive cells in the penumbra at 10 h, and in the ischemic boundary and core at 24 and 36 h of reperfusion. FA curtailed active caspase 3 expression in the penumbra at 10 h and restored NeuN-labeled neurons in the penumbra and ischemic core at 36 h of reperfusion. FA decreased the level of ICAM-1 mRNA and the number of microglia/macrophages, and subsequently down-regulated inflammation-induced oxidative stress and oxidative stress-related apoptosis, suggesting that FA provides neuroprotection against oxidative stress-related apoptosis by inhibiting ICAM-1 mRNA expression after cerebral ischemia/reperfusion injury in rats.

PMID:
18400211
DOI:
10.1016/j.brainres.2008.02.090
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center