Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cardiovasc Pharmacol. 2008 May;51(5):443-9. doi: 10.1097/FJC.0b013e318168e711.

Ranolazine inhibits an oxidative stress-induced increase in myocyte sodium and calcium loading during simulated-demand ischemia.

Author information

1
Cardiology Division, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA.

Abstract

Ranolazine inhibits the late Na current and is proposed to reduce angina by decreasing [Na]i during ischemia, thereby reducing Ca influx via Na/Ca exchange (NCX). We sought to test this hypothesis and to determine whether oxidative stress during simulated-demand ischemia activates the late Na current. We measured [Ca]i and [Na]i in rabbit ventricular myocytes by flow cytometry during metabolic inhibition (MI) with 2 mM cyanide and 0 mM glucose at 37 degrees C plus pacing (P) at 0.5 Hz (P-MI), and in P-MI + 1, 10, or 50 microM ranolazine. In the clinically relevant concentration range (1-10 microM), ranolazine decreased Na and Ca loading and the development of myocyte contracture. P-MI caused an increase in fluorescence of the oxidative radical probe CM-H2DCFDA, which was inhibited by the radical scavenger Tiron 20 mM. The NCX inhibitor KB-R7943 (10 microM) and Tiron 20 mM reduced the rise in [Ca]i during P-MI and eliminated the effect of 10 microM ranolazine on [Ca]i. These results indicate that oxidative stress increases the late Na current during MI. Inhibition of the resulting increase in Na and Ca loading and contracture seems to account for the observed antiischemia effects of ranolazine.

PMID:
18398379
DOI:
10.1097/FJC.0b013e318168e711
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center