Send to

Choose Destination
See comment in PubMed Commons below
J Acoust Soc Am. 2008 Apr;123(4):2424-31. doi: 10.1121/1.2839017.

Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models.

Author information

Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles Young Drive South, Los Angeles, California 90095, USA.


Behavioral and ecological studies would benefit from the ability to automatically identify species from acoustic recordings. The work presented in this article explores the ability of hidden Markov models to distinguish songs from five species of antbirds that share the same territory in a rainforest environment in Mexico. When only clean recordings were used, species recognition was nearly perfect, 99.5%. With noisy recordings, performance was lower but generally exceeding 90%. Besides the quality of the recordings, performance has been found to be heavily influenced by a multitude of factors, such as the size of the training set, the feature extraction method used, and number of states in the Markov model. In general, training with noisier data also improved recognition in test recordings, because of an increased ability to generalize. Considerations for improving performance, including beamforming with sensor arrays and design of preprocessing methods particularly suited for bird songs, are discussed. Combining sensor network technology with effective event detection and species identification algorithms will enable observation of species interactions at a spatial and temporal resolution that is simply impossible with current tools. Analysis of animal behavior through real-time tracking of individuals and recording of large amounts of data with embedded devices in remote locations is thus a realistic goal.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Support Center