Send to

Choose Destination
See comment in PubMed Commons below
Neurobiol Aging. 2009 Dec;30(12):2021-30. doi: 10.1016/j.neurobiolaging.2008.02.009. Epub 2008 Apr 3.

IGF-1 signaling reduces neuro-inflammatory response and sensitivity of neurons to MPTP.

Author information

Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, UMR 5227, Bordeaux, France.


Reduced expression of IGF-1R increases lifespan and resistance to oxidative stress in the mouse, raising the possibility that this also confers relative protection against the pro-parkinsonian neurotoxin MPTP, known to involve an oxidative stress component. We used heterozygous IGF-1R(+/-) mice and challenged them with MPTP. Interestingly, MPTP induced more severe lesions of dopaminergic neurons of the substantia nigra, in IGF-1R(+/-) mice than in wild-type animals. Using electron spin resonance, we found that free radicals were decreased in IGF-1R(+/-) mice in comparison with controls, both before and after MPTP exposure, suggesting that the increased vulnerability of dopamine neurons is not caused by oxidative stress. Importantly, we showed that IGF-1R(+/-) mice display a dramatically increased neuro-inflammatory response to MPTP that may ground the observed increase in neuronal death. Microarray analysis revealed that oxidative stress-associated genes, but also several anti-inflammatory signaling pathways were downregulated under control conditions in IGF-1R(+/-) mice compared to WT. Collectively, these data indicate that IGF signaling can reduce neuro-inflammation dependent sensitivity of neurons to MPTP.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center