Format

Send to

Choose Destination
Br J Nutr. 2008 Nov;100(5):968-76. doi: 10.1017/S0007114508966083. Epub 2008 Apr 8.

A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells.

Author information

1
Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) and Institute of Biomedicine, University of León, León 24071, Spain.

Abstract

We investigated the effects of the flavonols kaempferol and quercetin on the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), endothelial cell selectin (E-selectin), inducible NO synthase (iNOS) and cyclo-oxygenase-2 (COX-2), and on the activation of the signalling molecules NF-kappaB and activator protein-1 (AP-1), induced by a cytokine mixture in cultured human umbilical vein endothelial cells. Inhibition of reactive oxygen and nitrogen species generation did not differ among both flavonols at 1 micromol/l but was significantly stronger for kaempferol at 5-50 micromol/l. Supplementation with increasing concentrations of kaempferol substantially attenuated the increase induced by the cytokine mixture in VCAM-1 (10-50 micromol/l), ICAM-1 (50 micromol/l) and E-selectin (5-50 micromol/l) expression. A significantly inhibitory effect of quercetin on VCAM-1 (10-50 micromol/l), ICAM-1 (50 micromol/l) and E-selectin (50 micromol/l) expression was also observed. Expression of adhesion molecules was always more strongly inhibited in kaempferol-treated than in quercetin-treated cells. The inhibitory effect on iNOS and COX-2 protein level was stronger for quercetin at 5-50 micromol/l. The effect of kaempferol on NF-kappaB and AP-1 binding activity was weaker at high concentrations (50 micromol/l) as compared with quercetin. The present study indicates that differences exist in the modulation of pro-inflammatory genes and in the blockade of NF-kappaB and AP-1 by kaempferol and quercetin. The minor structural differences between both flavonols determine differences in their anti-inflammatory properties and in their efficiency in inhibiting signalling molecules.

PMID:
18394220
DOI:
10.1017/S0007114508966083
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Cambridge University Press
Loading ...
Support Center