Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Biotechnol J. 2008 Jun;6(5):504-15. doi: 10.1111/j.1467-7652.2008.00337.x. Epub 2008 Apr 3.

A novel platform for biologically active recombinant human interleukin-13 production.

Author information

1
A.B. Lucas Secondary School, 656 Tennent Avenue, London, ON, Canada.

Abstract

Interleukin-13 (IL-13) is a pleiotropic regulatory cytokine with the potential for treating several human diseases, including type-1 diabetes. Thus far, conventional expression systems for recombinant IL-13 production have proven difficult and are limited by efficiency. In this study, transgenic plants were used as a novel expression platform for the production of human IL-13 (hIL-13). DNA constructs containing hIL-13 cDNA were introduced into tobacco plants. Transcriptional expression of the hIL-13 gene in transgenic plants was confirmed by reverse transcriptase-polymerase chain reaction and Northern blotting. Western blot analysis showed that the hIL-13 protein was efficiently accumulated in transgenic plants and present in multiple molecular forms, with an expression level as high as 0.15% of total soluble protein in leaves. The multiple forms of plant-derived recombinant hIL-13 (rhIL-13) are a result of differential N-linked glycosylation, as revealed by enzymatic and chemical deglycosylation, but not of disulphide-linked oligomerization. In vitro trypsin digestion indicated that plant rhIL-13 was more resistant than unglycosylated control rhIL-13 to proteolysis. The stability of plant rhIL-13 to digestion was further supported with simulated gastric and intestinal fluid digestion. In vitro bioassays using a factor-dependent human erythroleukaemic cell line (TF-1 cells) showed that plant rhIL-13 retained the biological functions of the authentic hIL-13 protein. These results demonstrate that transgenic plants are superior to conventional cell-based expression systems for the production of rhIL-13. Moreover, transgenic plants synthesizing high levels of rhIL-13 may prove to be an attractive delivery system for direct oral administration of IL-13 in the treatment of clinical diseases such as type-1 diabetes.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center