Format

Send to

Choose Destination
Cell Stem Cell. 2008 Feb 7;2(2):141-50. doi: 10.1016/j.stem.2007.11.014.

Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide.

Author information

1
Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 661 Hoes Lane, Piscataway, NJ 08854, USA.

Abstract

Mesenchymal stem cells (MSCs) can become potently immunosuppressive through unknown mechanisms. We found that the immunosuppressive function of MSCs is elicited by IFNgamma and the concomitant presence of any of three other proinflammatory cytokines, TNFalpha, IL-1alpha, or IL-1beta. These cytokine combinations provoke the expression of high levels of several chemokines and inducible nitric oxide synthase (iNOS) by MSCs. Chemokines drive T cell migration into proximity with MSCs, where T cell responsiveness is suppressed by nitric oxide (NO). This cytokine-induced immunosuppression was absent in MSCs derived from iNOS(-/-) or IFNgammaR1(-/-) mice. Blockade of chemokine receptors also abolished the immunosuppression. Administration of wild-type MSCs, but not IFNgammaR1(-/-) or iNOS(-/-) MSCs, prevented graft-versus-host disease in mice, an effect reversed by anti-IFNgamma or iNOS inhibitors. Wild-type MSCs also inhibited delayed-type hypersensitivity, while iNOS(-/-) MSCs aggravated it. Therefore, proinflammatory cytokines are required to induce immunosuppression by MSCs through the concerted action of chemokines and NO.

PMID:
18371435
DOI:
10.1016/j.stem.2007.11.014
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center