Send to

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2008 Jul 1;17(13):1968-77. doi: 10.1093/hmg/ddn094. Epub 2008 Mar 25.

A novel translation re-initiation mechanism for the p63 gene revealed by amino-terminal truncating mutations in Rapp-Hodgkin/Hay-Wells-like syndromes.

Author information

  • 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.


Missense mutations in the 3' end of the p63 gene are associated with either RHS (Rapp-Hodgkin syndrome) or AEC (Ankyloblepharon Ectodermal defects Cleft lip/palate) syndrome. These mutations give rise to mutant p63alpha protein isoforms with dominant effects towards their wild-type counterparts. Here we report four RHS/AEC-like patients with mutations (p.Gln9fsX23, p.Gln11X, p.Gln16X), that introduce premature termination codons in the N-terminal part of the p63 protein. These mutations appear to be incompatible with the current paradigms of dominant-negative/gain-of-function outcomes for other p63 mutations. Moreover it is difficult to envisage how the remaining small N-terminal polypeptide contributes to a dominant disease mechanism. Primary keratinocytes from a patient containing the p.Gln11X mutation revealed a normal and aberrant p63-related protein that was just slightly smaller than the wild-type p63. We show that the smaller p63 protein is produced by translation re-initiation at the next downstream methionine, causing truncation of a non-canonical transactivation domain in the DeltaN-specific isoforms. Interestingly, this new DeltaDeltaNp63 isoform is also present in the wild-type keratinocytes albeit in small amounts compared with the p.Gln11X patient. These data establish that the p.Gln11X-mutation does not represent a null-allele leading to haploinsufficiency, but instead gives rise to a truncated DeltaNp63 protein with dominant effects. Given the nature of other RHS/AEC-like syndrome mutations, we conclude that these mutations affect only the DeltaNp63alpha isoform and that this disruption is fundamental to explaining the clinical characteristics of these particular ectodermal dysplasia syndromes.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center