Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Jun 6;283(23):15638-46. doi: 10.1074/jbc.M800487200. Epub 2008 Mar 25.

New insights into the alternative D-glucarate degradation pathway.

Author information

CNRS-UMR 8030, Genoscope-Commissariat à l'Energie Atomique, 2 Rue Gaston Crémieux, Evry 91057, France.


Although the D-glucarate degradation pathway is well characterized in Escherichia coli, genetic and biochemical information concerning the alternative pathway proposed in Pseudomonas species and Bacillus subtilis remains incomplete. Acinetobacter baylyi ADP1 is a Gram-negative soil bacterium possessing the alternative pathway and able to grow using D-glucarate as the only carbon source. Based on the annotation of its sequenced genome (1), we have constructed a complete collection of singlegene deletion mutants (2). High throughput profiling for growth on a minimal medium containing D-glucarate as the only carbon source for approximately 2450 mutants led to the identification of the genes involved in D-glucarate degradation. Protein purification after recombinant production in E. coli allowed us to reconstitute the enzymatic pathway in vitro. We describe here the kinetic characterization of D-glucarate dehydratase, d-5-keto-4-deoxyglucarate dehydratase, and of cooperative alpha-ketoglutarate semialdehyde dehydrogenase. Transcription and expression analyses of the genes involved in D-glucarate metabolism within a single organism made it possible to access information regarding the regulation of this pathway for the first time.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center