Send to

Choose Destination
Neuroscience. 2008 Apr 22;153(1):162-74. doi: 10.1016/j.neuroscience.2008.02.018. Epub 2008 Feb 21.

Expression and localization of Na-driven Cl-HCO(3)(-) exchanger (SLC4A8) in rodent CNS.

Author information

Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.


The Na(+)-driven Cl-HCO(3) exchanger (NDCBE or SLC4A8) is a member of the solute carrier 4 (SLC4) family of HCO(3)(-) transporters, which includes products of 10 genes with similar sequences. Most SLC4 members play important roles in regulating intracellular pH (pH(i)). Physiological studies suggest that NDCBE is a major pH(i) regulator in at least hippocampal (HC) pyramidal neurons. We generated a polyclonal rabbit antibody directed against the first 18 residues of the cytoplasmic N terminus (Nt) of human NDCBE. By Western blotting, the antibody distinguishes NDCBE-as a purified Nt peptide or a full-length transporter (expressed in Xenopus oocytes)-from other Na(+)-coupled HCO(3)(-) transporters. By Western blotting, the antiserum recognizes an approximately 135-kDa band in several brain regions of adult mice: the cerebral cortex (CX), subcortex (SCX), cerebellum (CB), and HC. In CX, PNGase F treatment reduces the molecular weight to approximately 116 kDa. By immunocytochemistry, affinity-purified (AP) NDCBE antibody stains the plasma membrane of neuron cell bodies and processes of rat HC neurons in primary culture as well as freshly dissociated mouse HC neurons. The AP antibody does not detect substantial NDCBE levels in freshly dissociated HC astrocytes, or astrocytes in HC or CB sections. By immunohistochemistry, the AP antibody recognizes high levels of NDCBE in neurons of CX, HC (including pyramidal neurons in Cornu Ammonis (CA)1-3 and dentate gyrus), substantial nigra, medulla, cerebellum (especially Purkinje and granular cells), and the basolateral membrane of fetal choroid plexus. Thus, NDCBE is in a position to contribute substantially to pH(i) regulation in multiple CNS neurons.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center