Format

Send to

Choose Destination
Cell. 2008 Mar 21;132(6):958-70. doi: 10.1016/j.cell.2008.01.018.

FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription.

Author information

1
Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

Abstract

Complex organisms require tissue-specific transcriptional programs, yet little is known about how these are established. The transcription factor FoxA1 is thought to contribute to gene regulation through its ability to act as a pioneer factor binding to nucleosomal DNA. Through genome-wide positional analyses, we demonstrate that FoxA1 cell type-specific functions rely primarily on differential recruitment to chromatin predominantly at distant enhancers rather than proximal promoters. This differential recruitment leads to cell type-specific changes in chromatin structure and functional collaboration with lineage-specific transcription factors. Despite the ability of FoxA1 to bind nucleosomes, its differential binding to chromatin sites is dependent on the distribution of histone H3 lysine 4 dimethylation. Together, our results suggest that methylation of histone H3 lysine 4 is part of the epigenetic signature that defines lineage-specific FoxA1 recruitment sites in chromatin. FoxA1 translates this epigenetic signature into changes in chromatin structure thereby establishing lineage-specific transcriptional enhancers and programs.

PMID:
18358809
PMCID:
PMC2323438
DOI:
10.1016/j.cell.2008.01.018
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center