Allelism and molecular mapping of soybean necrotic root mutants

Genome. 2008 Apr;51(4):243-50. doi: 10.1139/G08-001.

Abstract

Mutability of the w4 flower color locus in soybean, Glycine max (L.) Merr., is conditioned by an allele designated w4-m. Germinal revertants recovered among self-pollinated progeny of mutable plants have been associated with the generation of necrotic root mutations, chlorophyll-deficiency mutations, and sterility mutations. A total of 24 necrotic root mutant lines were generated from a total of 24 independent reversion events at the w4-m locus. The initial mutable population included 4 mutable categories for w4-m, designated (1) low frequency of early excisions, (2) low frequency of late excisions, (3) high frequency of early excisions, and (4) high frequency of late excisions. These mutable categories were based upon flower phenotype, i.e., somatic tissue. A total of 22 of 24 necrotic root mutations occurred from germinal reversions classified in the high frequency of excision categories. Of these 22 mutants, 14 came from early excisions and 8 came from late excisions. These necrotic root mutants were allelic to 6 previously identified necrotic root mutants derived from the study of germinal revertants, i.e., gene tagging studies, chemical mutagenesis, and "spontaneous" occurrences from genetic crosses. Thus, all 30 necrotic root mutants in soybean are allelic. An F2 mapping population from the cross of Minsoy (Rn1 Rn1) x T328 (rn1 rn1) was used to map the Rn1 locus using simple sequence repeat (SSR) markers. The Rn1 locus was located between Satt288 and Satt612 on molecular linkage group G.

MeSH terms

  • Alleles*
  • Apoptosis
  • Chromosome Mapping
  • Glycine max / cytology
  • Glycine max / genetics*
  • Mutation*
  • Phenotype
  • Plant Roots / cytology