Format

Send to

Choose Destination
Phys Rev Lett. 2008 Feb 22;100(7):073001. Epub 2008 Feb 19.

Coherence of an optically illuminated single nuclear spin qubit.

Author information

1
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Abstract

We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt, Science 316, 1312 (2007)10.1126/science.1139831] when a proximal electronic spin associated with a nitrogen-vacancy (N-V) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment.

Supplemental Content

Full text links

Icon for American Physical Society
Loading ...
Support Center